Printed by Michael E Sparks

Jan 01, 21 11:37 quorumSense.R Page 1/4

Michael E. Sparks, 17 Feb 2016
Identify and report potential quorum-sensing motifs in genomic DNA

Time-critical routines have been ported to C, which is strongly preferred
to using the native R implementation. Assume by default that C’s available.
#Cavail = FALSE

Cavail = TRUE

Position Weight Matrix (i.e., Oth-order Markov chain) -
probabilities were approximated by eyeballing the logo plot
in Figure 3 of Stauff and Bassler 2011
(http://www.nchbi.nlm.nih.gov/pmc/articles/PMC3147534/)
wordsize « 18 # length of motif
smoothconst « 0.020 # permits limited ambiguity
pwm «— matrix(

c(0.355,0.245,0.190,0.190, smoothconst,
.100,0.600,0.080,0.200, smoothconst,
.180,0.210,0.040,0.550, smoothconst,
.180,0.025,0.755,0.020, smoothconst,
.290,0.190,0.200,0.300, smoothconst,
.020,0.410,0.160,0.390, smoothconst,
.300,0.360,0.100,0.220, smoothconst,
.240,0.300,0.200,0.240, smoothconst,
.350,0.140,0.140,0.350, smoothconst,
.300,0.220,0.110,0.350, smoothconst,
.220,0.250,0.300,0.210, smoothconst,
.100,0.080,0.400,0.400, smoothconst,
.220,0.190,0.360,0.210, smoothconst,
.300,0.240,0.240,0.200, smoothconst,
.020,0.600,0.150,0.210, smoothconst,
.500,0.090,0.190,0.200, smoothconst,
.190,0.110,0.600,0.080, smoothconst,
.200,0.220,0.230,0.330, smoothconst),

nrow=5,ncol=wordsize, byrow=FALSE)
The "Any" catchall allows for consideration of candidate
motifs harboring ambiguous nucleotides (given a 2% likelihood).
row.names (pwm) « c("Ade", "Cyt", "Gua", "Thy", "Any")
columns denote position in motif and each constitutes a PMF
sanity check proceeds with silence:
for(i in 1:word) if(sum(pwm/[,i]) != 1.0) print (i)

oNeoloNoNolololoNoloNoNoNoNolNoNoNoNe]

threshold for reporting candidate quorum-sensing motifs (arbitrary)
#minscore <- log(0.25**wordsize)

UPDATE: Empirically, -20.0 seems like a reasonable floor, so...

> exp(-20)**(1/18)

[1] 0.329193

> log((exp(-20)**(1/18)) ** 18)

[1] -20

minscore « -20.0

highest-scoring chain possible in matrix:
#> sum(log(apply (pwm,2,max)))
#[1] —-16.01553

R function : quorumCandidates

Reports candidate quorum-sensing motifs present in objects returned by
the "read.fasta" function of the "seginr" package. In particular, these
objects should result from calls to that function with the following

parameter settings: seqtype="DNA",as.string=TRUE, forceDNAtolower=TRUE

Friday January 01, 2021 1/6

Printed by Michael E Sparks

Jan 01,21 11:37 quorumSense.R Page 2/4
#

This function depends on three "global" vars, defined supra:

1) "wordsize" (length of motif)

2) "pwm" (probability weight matrix of motif)

3) "minscore" (min score to merit reporting)

It also relies on its stablemate C function, scoreQuorumCandidates,

if a C system interface is available.

#

Forward & reverse strands of each sequence are processed — mutations may
disrupt otherwise perfectly palindromic motifs, resulting in differential
scoring of the element on each strand of the DNA duplex. When a motif is
positioned between two proximal genes, this may help in resolving which

of the flanking genes is most likely to be under the regulatory

element’s control.

quorumCandidates ~ function(seqgobij) {
seqginr doesn’t ignore whitespace (why?!!), so strip it out
seq <« gsub("\s","",seqobj) [[1]]

build score vectors - note that joint probabilities are expressed
in log space, to mitigate risk of buffer underflows

veclen « nchar (seq)-wordsize+l

scoresF « vector (mode="numeric", length=veclen) # Watson strand
scoresR « vector (mode="numeric", length=veclen) # Crick strand

score candidate quorum-sensing motifs
if(!Cavail) { # use native R code when C unavailable
seq « strsplit(seq,"")[[1]]

recode nucleotides as integers
for(i in l:length(seq))
seq[i] « switch(seq[i],’a’="1',"'c’'="2","g’'="3","t’'="4","5")

score forward strand
for (i in l:veclen) {
scoresF[i] « 0.0
for(j in 1l:wordsize)
scoresF[i] « scoresF[i] + log(pwm[as.integer (seqg[i+j-11),3])

}

take reverse complement
seq « rev(seq)
for (i in l:length(seq))
seq[i] « switch(seq[i],’1’'="4","2"="3",'3"'="2",74"="1","5")

score reverse strand
for (i in 1l:veclen) {
scoresR[i] « 0.0
for(j in l:wordsize)
scoresR[1i] « scoresR[i] + log(pwm[as.integer (seq[i+j-11),3])
}
}

else { # C is strongly preferred when available!
alien « .C("scoreQuorumCandidates",

gDNAseg=as.character (seq),
forwardScores=as.numeric (scoresF),
reverseScores=as.numeric (scoresR),
posSpecProbs=as.vector (pwm),
wordLen=as.integer (wordsize),
DUP=TRUE)

2/6 Friday January 01, 2021

Printed by Michael E Sparks

Jan 01, 21 11:37 quorumSense.R Page 3/4

scoresF < alienS$forwardScores
scoresR « alienS$SreverseScores

}

Report instances where likelihood of candidate’s being
a quorum-sensing motif exceeded the threshold minimum.
Results are printed via side effects, so we hand off the
return value to a dummy variable, to be ignored.
ignore « lapply(
which (!scoresF < minscore),
function (x) write (paste (scoresF[x],x,"+",
paste (attr (seqobj, "Annot") , "(Forward sense)", sep=""),
sep="\t"), file=""))

ignore « lapply(
which (!scoresR < minscore),
function(x) write (paste(scoresR[x],x,"-",
paste (attr (seqobj, "Annot") , "(Reverse sense)", sep=""),
sep="\t"), file=""))

} # end quorumCandidates
"Main application" -——————————————— -

"Customizable" stuff (point to appropriate working directories, filenames)
args « commandArgs (trailingOnly=TRUE)

#setwd (" /some/path/to/motifs_PWM")

setwd (args[1l])

#sourcefile <— "test.fa.txt"

sourcefile « args|[2]

#sink ("session_output.txt") # tab-delimited, Excel-importable score set
sink (args[3]) # tab-delimited, Excel-importable score set

check/ remediate critical dependencies (not terribly robust!)
if (!require(seqginr)) {

install.packages ("seqinr")

library (seginr)

}

use C code if available on system
if (Cavail = TRUE) ({
dyn.load ("quorumScoring.so")
if (!is.loaded ("scoreQuorumCandidates")) {
Cavail = FALSE
dyn.unload ("quorumScoring.so")
}
}

should generally be able to byte compile functions (moderate speedup)
if (require (compiler)) quorumCandidates ~ cmpfun (quorumCandidates)

Results are printed via side effects, so we hand off the
return value to a dummy variable, to be ignored.
ignore « lapply(
read.fasta(file=sourcefile, seqtype="DNA",
as.string=TRUE, forceDNAtolower=TRUE) ,
quorumCandidates)

sink ()

Friday January 01, 2021

3/6

Printed by Michael E Sparks

Jan 01, 21 11:37 quorumSense.R Page 4/4

q("nO")

4/6 Friday January 01, 2021

Printed by Michael E Sparks

Jan 01, 21 11:36 quorumScoring.c Page 1/2
/* Michael E. Sparks, 16 Feb 2016

*

* Stablemate C function for the quorumCandidates

* function I’ve written in R.

*

* Nothing profound here - systems with RTools installed

* can benefit from this "portable assembly code" speedup.

* Modify the Cavail variable in quorum_sense.R accordingly.

*

‘‘R CMD SHLIB quorumScoring.c”

*
AN

#include <R.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>

#define SCORE (VEC) \
for (i=0; i<seqglen—*wordlen+1;++i) { \
* (VEC+1)=0.0; \
for (j=0; j<*wordlen;++3j) \
* (VEC+1i) +=1og (* (probs+* (intseg+i+3j)+3*5)); \
}

void scoreQuorumCandidates (
char **seq,
double *scoresF,
double *scoresR,
double *probs,
int *wordlen
) A

register int

i, 3, /* iterator vars */
revaux, /* auxiliary var for reversing intseq */
seqlen; /* stores length of sequence argument */

int *intseg=NULL; /* storage for integer translation of seq */
/* allocate space for sequence */
seglen=strlen (*seq);
if ((intseg=(int*)malloc (sizeof (int) *seglen))==NULL) {
Rprintf ("Cannot allocate sufficient memory for sequence\n") ;
exit (EXIT_FAILURE) ;
}

/* recode using integer scheme */
for (i=0;i<seqglen; ++1i)
switch (* (*seg+i)) {
case(’a’)
* (intseqg+i)=0;
break;
case(’c’)
* (intseqg+i)=1;
break;
case('g’)
* (intseqg+i)=2;
break;
case ('t")
* (intseqg+i)=3;
break;
default

Friday January 01, 2021 5/6

Printed by Michael E Sparks

Jan 01,21 11:36 quorumScoring.c

Page 2/2

* (intseqg+i)=4;
}

/* score forward strand */
SCORE (scoresF)

/* reverse strand... */

for (i=0, j=seqlen-1;i<seqglen/2;++i,——3j) {
revaux=* (intseqg+i) ;
(intseg+i)= (intseqgt+j);
* (intsegtj)=revaux;

}

/* ...and take its complement */
for (i=0; i<seqglen; ++i)
switch (* (intseqg+i)) {
case (0)
* (intseg+i) =3;
break;
case (1)
* (intseqg+i)=2;
break;
case (2)
* (intseqg+i)=1;
break;
case (3)
* (intseg+i) =0;
break;
default

’

}

/* score reverse strand */
SCORE (scoresR)

free(intseq);
return;

6/6

Friday January 01, 2021

