
Michael E. Sparks, 17 Feb 2016
Identify and report potential quorum−sensing motifs in genomic DNA

Time−critical routines have been ported to C, which is strongly preferred
to using the native R implementation. Assume by default that C’s available.
#Cavail = FALSE
Cavail = TRUE

Position Weight Matrix (i.e., 0th−order Markov chain) −
probabilities were approximated by eyeballing the logo plot
in Figure 3 of Stauff and Bassler 2011
(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147534/)
wordsize ← 18 # length of motif
smoothconst ← 0.020 # permits limited ambiguity
pwm ← matrix(
 c(0.355,0.245,0.190,0.190,smoothconst,
 0.100,0.600,0.080,0.200,smoothconst,
 0.180,0.210,0.040,0.550,smoothconst,
 0.180,0.025,0.755,0.020,smoothconst,
 0.290,0.190,0.200,0.300,smoothconst,
 0.020,0.410,0.160,0.390,smoothconst,
 0.300,0.360,0.100,0.220,smoothconst,
 0.240,0.300,0.200,0.240,smoothconst,
 0.350,0.140,0.140,0.350,smoothconst,
 0.300,0.220,0.110,0.350,smoothconst,
 0.220,0.250,0.300,0.210,smoothconst,
 0.100,0.080,0.400,0.400,smoothconst,
 0.220,0.190,0.360,0.210,smoothconst,
 0.300,0.240,0.240,0.200,smoothconst,
 0.020,0.600,0.150,0.210,smoothconst,
 0.500,0.090,0.190,0.200,smoothconst,
 0.190,0.110,0.600,0.080,smoothconst,
 0.200,0.220,0.230,0.330,smoothconst),
 nrow=5,ncol=wordsize,byrow=FALSE)
The "Any" catchall allows for consideration of candidate
motifs harboring ambiguous nucleotides (given a 2% likelihood).
row.names(pwm) ← c("Ade","Cyt","Gua","Thy","Any")
columns denote position in motif and each constitutes a PMF
sanity check proceeds with silence:
for(i in 1:word) if(sum(pwm[,i]) != 1.0) print(i)

threshold for reporting candidate quorum−sensing motifs (arbitrary)
#minscore <− log(0.25**wordsize)
UPDATE: Empirically, −20.0 seems like a reasonable floor, so...
> exp(−20)**(1/18)
[1] 0.329193
> log((exp(−20)**(1/18)) ** 18)
[1] −20
minscore ← −20.0

highest−scoring chain possible in matrix:
#> sum(log(apply(pwm,2,max)))
#[1] −16.01553

R function : quorumCandidates
Reports candidate quorum−sensing motifs present in objects returned by
the "read.fasta" function of the "seqinr" package. In particular, these
objects should result from calls to that function with the following
parameter settings: seqtype="DNA",as.string=TRUE,forceDNAtolower=TRUE

Jan 01, 21 11:37 Page 1/4quorumSense.R

Printed by Michael E Sparks

Friday January 01, 2021 1/6

#
This function depends on three "global" vars, defined supra:
1) "wordsize" (length of motif)
2) "pwm" (probability weight matrix of motif)
3) "minscore" (min score to merit reporting)
It also relies on its stablemate C function, scoreQuorumCandidates,
if a C system interface is available.
#
Forward & reverse strands of each sequence are processed − mutations may
disrupt otherwise perfectly palindromic motifs, resulting in differential
scoring of the element on each strand of the DNA duplex. When a motif is
positioned between two proximal genes, this may help in resolving which
of the flanking genes is most likely to be under the regulatory
element’s control.
quorumCandidates ← function(seqobj) {
 # seqinr doesn’t ignore whitespace (why?!!), so strip it out
 seq ← gsub("\\s","",seqobj)[[1]]

 # build score vectors − note that joint probabilities are expressed
 # in log space, to mitigate risk of buffer underflows
 veclen ← nchar(seq)−wordsize+1
 scoresF ← vector(mode="numeric",length=veclen) # Watson strand
 scoresR ← vector(mode="numeric",length=veclen) # Crick strand

 # score candidate quorum−sensing motifs
 if(!Cavail) { # use native R code when C unavailable
 seq ← strsplit(seq,"")[[1]]

 # recode nucleotides as integers
 for(i in 1:length(seq))
 seq[i] ← switch(seq[i],’a’=’1’,’c’=’2’,’g’=’3’,’t’=’4’,’5’)

 # score forward strand
 for(i in 1:veclen) {
 scoresF[i] ← 0.0
 for(j in 1:wordsize)
 scoresF[i] ← scoresF[i] + log(pwm[as.integer(seq[i+j−1]),j])
 }

 # take reverse complement
 seq ← rev(seq)
 for(i in 1:length(seq))
 seq[i] ← switch(seq[i],’1’=’4’,’2’=’3’,’3’=’2’,’4’=’1’,’5’)

 # score reverse strand
 for(i in 1:veclen) {
 scoresR[i] ← 0.0
 for(j in 1:wordsize)
 scoresR[i] ← scoresR[i] + log(pwm[as.integer(seq[i+j−1]),j])
 }
 }
 else { # C is strongly preferred when available!
 alien ← .C("scoreQuorumCandidates",
 gDNAseq=as.character(seq),
 forwardScores=as.numeric(scoresF),
 reverseScores=as.numeric(scoresR),
 posSpecProbs=as.vector(pwm),
 wordLen=as.integer(wordsize),
 DUP=TRUE)

Jan 01, 21 11:37 Page 2/4quorumSense.R

Printed by Michael E Sparks

2/6 Friday January 01, 2021

 scoresF ← alien$forwardScores
 scoresR ← alien$reverseScores
 }

 # Report instances where likelihood of candidate’s being
 # a quorum−sensing motif exceeded the threshold minimum.
 # Results are printed via side effects, so we hand off the
 # return value to a dummy variable, to be ignored.
 ignore ← lapply(
 which(!scoresF < minscore),
 function(x) write(paste(scoresF[x],x,"+",
 paste(attr(seqobj,"Annot"),"(Forward sense)",sep=" "),
 sep="\t"),file=""))

 ignore ← lapply(
 which(!scoresR < minscore),
 function(x) write(paste(scoresR[x],x,"−",
 paste(attr(seqobj,"Annot"),"(Reverse sense)",sep=" "),
 sep="\t"),file=""))

} # end quorumCandidates

"Main application" −−

"Customizable" stuff (point to appropriate working directories, filenames)
args ← commandArgs(trailingOnly=TRUE)
#setwd("/some/path/to/motifs_PWM")
setwd(args[1])
#sourcefile <− "test.fa.txt"
sourcefile ← args[2]
#sink("session_output.txt") # tab−delimited, Excel−importable score set
sink(args[3]) # tab−delimited, Excel−importable score set

check/ remediate critical dependencies (not terribly robust!)
if(!require(seqinr)) {
 install.packages("seqinr")
 library(seqinr)
}

use C code if available on system
if(Cavail ≡ TRUE) {
 dyn.load("quorumScoring.so")
 if(!is.loaded("scoreQuorumCandidates")) {
 Cavail = FALSE
 dyn.unload("quorumScoring.so")
 }
}

should generally be able to byte compile functions (moderate speedup)
if(require(compiler)) quorumCandidates ← cmpfun(quorumCandidates)

Results are printed via side effects, so we hand off the
return value to a dummy variable, to be ignored.
ignore ← lapply(
 read.fasta(file=sourcefile,seqtype="DNA",
 as.string=TRUE,forceDNAtolower=TRUE),
 quorumCandidates)

sink()

Jan 01, 21 11:37 Page 3/4quorumSense.R

Printed by Michael E Sparks

Friday January 01, 2021 3/6

q("no")

Jan 01, 21 11:37 Page 4/4quorumSense.R

Printed by Michael E Sparks

4/6 Friday January 01, 2021

/* Michael E. Sparks, 16 Feb 2016
 *
 * Stablemate C function for the quorumCandidates
 * function I’ve written in R.
 *
 * Nothing profound here − systems with RTools installed
 * can benefit from this "portable assembly code" speedup.
 * Modify the Cavail variable in quorum_sense.R accordingly.
 * ‘‘R CMD SHLIB quorumScoring.c"
 */

#include <R.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>

#define SCORE(VEC) \
for(i=0;i<seqlen−*wordlen+1;++i) { \
 *(VEC+i)=0.0; \
 for(j=0;j<*wordlen;++j) \
 (VEC+i)+=log((probs+*(intseq+i+j)+j*5)); \
}

void scoreQuorumCandidates(
 char **seq,
 double *scoresF,
 double *scoresR,
 double *probs,
 int *wordlen
) {
 register int
 i,j, /* iterator vars */
 revaux, /* auxiliary var for reversing intseq */
 seqlen; /* stores length of sequence argument */
 int *intseq=NULL; /* storage for integer translation of seq */

 /* allocate space for sequence */
 seqlen=strlen(*seq);
 if((intseq=(int*)malloc(sizeof(int)*seqlen))==NULL) {
 Rprintf("Cannot allocate sufficient memory for sequence\n");
 exit(EXIT_FAILURE);
 }

 /* recode using integer scheme */
 for(i=0;i<seqlen;++i)
 switch(*(*seq+i)) {
 case(’a’) :
 *(intseq+i)=0;
 break;
 case(’c’) :
 *(intseq+i)=1;
 break;
 case(’g’) :
 *(intseq+i)=2;
 break;
 case(’t’) :
 *(intseq+i)=3;
 break;
 default :

Jan 01, 21 11:36 Page 1/2quorumScoring.c

Printed by Michael E Sparks

Friday January 01, 2021 5/6

 *(intseq+i)=4;
 }

 /* score forward strand */
 SCORE(scoresF)

 /* reverse strand... */
 for(i=0,j=seqlen−1;i<seqlen/2;++i,−−j) {
 revaux=*(intseq+i);
 (intseq+i)=(intseq+j);
 *(intseq+j)=revaux;
 }

 /* ...and take its complement */
 for(i=0;i<seqlen;++i)
 switch(*(intseq+i)) {
 case(0) :
 *(intseq+i)=3;
 break;
 case(1) :
 *(intseq+i)=2;
 break;
 case(2) :
 *(intseq+i)=1;
 break;
 case(3) :
 *(intseq+i)=0;
 break;
 default :
 ;
 }

 /* score reverse strand */
 SCORE(scoresR)

 free(intseq);
 return;
}

Jan 01, 21 11:36 Page 2/2quorumScoring.c

Printed by Michael E Sparks

6/6 Friday January 01, 2021

