
Michael E Sparks, 10−13−16 −− Towers of Hanoi in IA32 assembly, for Linux

Demonstrates stack pressure resulting from a recursive algorithm that isn’t
last−call optimized. This example is meant to harmonize with my Prolog
solution for the ToH puzzle.

The following assembly code could be extended to handle any arbitrary
number of disks .ge. 1.

I’ve used pure assembly here−−no "cheating" by calling out to the
C standard library!

See /usr/include/x86_64−linux−gnu/asm/unistd_32.h for a list of everyday
Linux system calls/ kernel services.

.section .rodata

digits: .string "0123456789ABCDEF"

announce:
 .ascii " disks:\n"
 .set announce_len, .−announce

nl: .byte 0xA # ASCII code for newline

arrow:
 .ascii " −> "
 .set arrow_len, .−arrow

left: # encode with 0xA
 .ascii "left"
 .set left_len, .−left

right: # encode with 0xB
 .ascii "right"
 .set right_len, .−right

center: # encode with 0xC
 .ascii "ctr"
 .set center_len, .−center

.section .text

.globl _start
_start:
 xor %esi, %esi # tracks how many disks to use in puzzle

series:
 incl %esi

 # Here, we consider using up to 4 disks.
 # As is, the code can readily accommodate up to 15 disks.
 # Modification would be necessary to accommodate
 # yet larger numbers (and then only for the announcement−
 # related instructions−−actual calculations should
 # proceed just fine, run−time requirements aside.)
 cmpl $0x4, %esi
 ja cleanup

 # announce how many disks for current iteration
 movl $0x4, %eax
 movl $0x1, %ebx
 movl $digits, %edi
 leal (%edi,%esi), %ecx
 movl $0x1, %edx
 int $0x80

 movl $0x4, %eax
 movl $0x1, %ebx

Dec 29, 20 16:13 Page 1/3hanoi.s

 movl $announce, %ecx
 movl $announce_len, %edx
 int $0x80

 pushl %esi # preserve counter register’s state prior to
 # invoking hanoi routine (which also uses it)

 # Setup initial invocation, a la hanoi(N,L,R,C) from Prolog.
 # Note that, ordinarily, args get pushed in reverse order.
 pushl $0xC # center (auxiliary peg)
 pushl $0xB # right (destination peg)
 pushl $0xA # left (source peg)
 pushl %esi # N (disk count)
 call hanoi

 # Keep in mind that Linux stacks grow down and
 # that offsets are calculated in units of bytes.

 # Note also that assembly is handled differently on BSD−
 # flavored *nix systems, including Mac OS X; hence, this
 # code Just. Ain’t. Portable.

 addl $0x10, %esp # clean off the stack

 popl %esi # retrieve counter state

 # print blank line
 movl $0x4, %eax
 movl $0x1, %ebx
 movl $nl, %ecx
 movl $0x1, %edx
 int $0x80

 jmp series

.type hanoi, @function
hanoi:
 # preserve caller’s stack frame
 pushl %ebp
 movl %esp, %ebp

 movl 0x8(%ebp), %esi # retrieve invocation’s ’N’ parameter
 cmpl $0x0, %esi
 jz leave_hanoi # short circuit if invoked by leaf node

 decl %esi # sets N1

 # setup the hanoi(N1,L,C,R) call (i.e., expand internal node)
 pushl 0x10(%ebp)
 pushl 0x14(%ebp)
 pushl 0xC(%ebp)
 pushl %esi
 call hanoi

 # we pushed four 32−bit values on the stack − clean them off!
 addl $0x10, %esp

 # process leaf node (i.e., print report)
 movl $0x4, %eax
 movl $0x1, %ebx

 movl 0xC(%ebp), %edi # determine what ’L’ variable’s grounded to
 cmpl $0xB, %edi
 jb LA # implies ’L’ is bound to "left" = 0xA
 je LB # to "right"
 ja LC # to "center"
LA:
 movl $left, %ecx

Dec 29, 20 16:13 Page 2/3hanoi.s

Printed by Michael E Sparks

Tuesday December 29, 2020 1/2hanoi.s

 movl $left_len, %edx
 jmp Ldone
LB:
 movl $right, %ecx
 movl $right_len, %edx
 jmp Ldone
LC:
 movl $center, %ecx
 movl $center_len, %edx
 jmp Ldone
Ldone:
 int $0x80

 movl $0x4, %eax
 movl $0x1, %ebx
 movl $arrow, %ecx
 movl $arrow_len, %edx
 int $0x80

 movl 0x10(%ebp), %edi # determine what ’R’ variable’s grounded to
 cmpl $0xB, %edi
 jb RA # implies ’R’ is bound to "left" = 0xA
 je RB # to "right"
 ja RC # to "center"
RA:
 movl $left, %ecx
 movl $left_len, %edx
 jmp Rdone
RB:
 movl $right, %ecx
 movl $right_len, %edx
 jmp Rdone
RC:
 movl $center, %ecx
 movl $center_len, %edx
 jmp Rdone
Rdone:
 int $0x80

 movl $0x4, %eax
 movl $0x1, %ebx
 movl $nl, %ecx
 movl $0x1, %edx
 int $0x80

 # We need to reset esi after the recursive invocation above
 movl 0x8(%ebp), %esi
 decl %esi # sets N1

 # setup the hanoi(N1,C,R,L) call (i.e., expand internal node)
 pushl 0xC(%ebp)
 pushl 0x10(%ebp)
 pushl 0x14(%ebp)
 pushl %esi
 call hanoi

 addl $0x10, %esp # clean off the stack frame
leave_hanoi:
 movl %ebp, %esp
 popl %ebp
 ret

cleanup:
 movl $0x1, %eax
 xor %ebx, %ebx
 int $0x80

Dec 29, 20 16:13 Page 3/3hanoi.s

Printed by Michael E Sparks

Tuesday December 29, 2020 2/2hanoi.s

