Printed by Michael E Sparks

Dec 30, 20 14:28 farmer.scm

Page 1/3

;7 Scheme solution to the farmer’s wolf-chicken—-grain problem.

77

;; Michael E. Sparks, 6 Dec 2020
77

;; SAMPLE USAGE:

II

;;Scheme@ (guile-user)> (soln-bfs *init-state* *goal-state* *soln-max—-len*)

;7 0 BARC-West: (chicken farmer grain wolf) <—-—-Rt 1-—-> BARC-East: ()
;7 1 BARC-West: (grain wolf) <—-—-Rt 1--> BARC-East: (chicken farmer)
;; 2 BARC-West: (farmer grain wolf) <-—-Rt 1-—> BARC-East: (chicken)
;; 3 BARC-West: (wolf) <—-—-Rt 1-—> BARC-East: (chicken farmer grain)
;; 4 BARC-West: (chicken farmer wolf) <--Rt 1--> BARC-East: (grain)
;; 5 BARC-West: (chicken) <--Rt 1--> BARC-East: (farmer grain wolf)
;7 6 BARC-West: (chicken farmer) <--Rt 1--> BARC-East:(grain wolf)
;7 7 BARC-West:() <-—-Rt 1-—-> BARC-East:(chicken farmer grain wolf)
77

;7 0 BARC-West: (chicken farmer grain wolf) <——Rt 1-—> BARC-East: ()
;7 1l BARC-West: (grain wolf) <——Rt 1-—> BARC-East: (chicken farmer)
;; 2 BARC-West: (farmer grain wolf) <——Rt 1-—> BARC-East: (chicken)
;; 3 BARC-West:(grain) <-—-Rt 1--> BARC-East:(chicken farmer wolf)
;; 4 BARC-West: (chicken farmer grain) <--Rt 1-—-> BARC-East: (wolf)
;; 5 BARC-West: (chicken) <--Rt 1--> BARC-East: (farmer grain wolf)
;7 6 BARC-West: (chicken farmer) <-—Rt 1--> BARC-East: (grain wolf)
;; 7 BARC-West:() <-—-Rt 1-—-> BARC-East:(chicken farmer grain wolf)

;; for various list utilities, sorting routines from R6RS
(import (rnrs (6)))

;; finds all paths from init to goal, of at most
;; max—depth length, using breadth-first search
(define (soln-bfs init goal max-depth)
(display-all-paths
(soln-bfs—aux (list (list init)) goal max—-depth)))

(define (soln-bfs—-aux curr-paths goal soln-len-1lim)
(define goal-p (lambda (x) (equal? x goal)))
(if (or (null? curr-paths)
(> (length (car curr-paths)) soln-len-1im))
" ()
(let* ((head-path (car curr-paths))
(curr-state (car head-path))
(children (successors curr—-state))
(new-paths (append
(cdr curr-paths)
(extend-path head-path children))))
(if (goal-p curr-state)
(cons head-path
(soln-bfs—aux new-paths goal soln-len-1im))
(soln-bfs—aux new-paths goal soln-len-1im)))))

;; returns a list of paths s.t. cand-path
;; has been extended with an elt of succ—nodes.
;; revisiting nodes is disallowed (no cycles).
(define (extend-path cand-path succ—-nodes)
(if (null? succ—nodes)
" ()
(let ((child (car succ-nodes)))
(if (member child cand-path)
(extend-path cand-path (cdr succ—-nodes))

Wednesday December 30, 2020

1/3



Printed by Michael E Sparks

Dec 30, 20 14:28 farmer.scm Page 2/3

(cons (append (list child) cand-path)
(extend—-path cand-path (cdr succ-nodes)))))))

;s length 1imit (in steps) of any plans found
(define *soln—-max—-len* 16)

;7 used to sort 1list elts (i.e., shore constituents)
(define (ssort list) (sort list string<))

;; assembles shores into overall farmer’s world state
(define-syntax mk-state
(syntax—-rules ()
((_ left right)
(cons (ssort left)
(list (ssort right))))))

; State representation is a pair of lists,
; being the left and right shores.
; Shore constituents are recorded 1in
; lexicographic order.
define *init-state*

(mk-state ' ("wolf" "grain" "chicken" "farmer") ’ ()))

.
4

.
/4
;
;

(

(define *goal-state~*
(mk—-state ’ () ’ ("farmer" "wolf" "chicken" "grain")))

;; data selectors tailored for our state representation
(define (left-shore world) (car world))

(define (right-shore world) (cadr world))

;; flags to denote polarity of trip
(define *left-to-right* "leftToRight")

(define *right-to-left* "rightToLeft")

;; checks whether shore is allowed when farmer’s away
(define (allowed-p shore)
(if (and
(not (member "farmer" shore))
(or (and (member "wolf" shore) (member "chicken" shore))
(and (member "grain" shore) (member "chicken" shore))))
#r
#t))

;; generates all legal child states of parental state
;; (no guarantees regarding novelty w/r/t candidate paths)
(define (successors state)

(let ((lbegin (left-shore state)) (rbegin (right-shore state)))
(if (member "farmer" lbegin)
(let* ((l-no-farmer (remove "farmer" lbegin))

(r-with—-farmer (append (list "farmer") rbegin))
(solo-trip (mk-state l-no—-farmer r-with-farmer))
(duo-trips (cargo—-trips *left-to-right* l-no-farmer
l-no—-farmer r-with-farmer)))
(if (allowed-p l-no—farmer)
(cons solo-trip duo-trips)
duo-trips))
(let* ((l-with-farmer (append (list "farmer") lbegin))

2/3 Wednesday December 30, 2020




Printed by Michael E Sparks

Dec 30, 20 14:28 farmer.scm Page 3/3

(r—-no—farmer (remove "farmer" rbegin))

(solo-trip (mk-state l-with-farmer r—-no-farmer))

(duo-trips (cargo-trips *right-to-left* r-no-farmer
r—-no—farmer l-with-farmer)))

(if (allowed-p r—no—farmer)
(cons solo-trip duo-trips)
duo-trips)))))

;; tests removal of elts of obj-list from src-shore
;7 (function assumes farmer’s already moved to dest-shore).
;; 1f allowable, returns overall state after the trip.
(define (cargo—-trips dir obj-list src-shore dest-shore)
(if (null? obj-list)
" ()
(let* ((obj (car obj-list))
(src—no-obj (remove obj src-shore))
(dest-with-obj (append (list obj) dest-shore)))
(if (allowed-p src—-no—-obj)
(if (egqv? dir *left-to-right*)
(cons (mk-state src—-no-obj dest-with-obj)
(cargo—-trips *left-to-right* (cdr obj-list)
src—-shore dest-shore))
(cons (mk-state dest-with-obj src—-no-obj)
(cargo—trips *right-to-left* (cdr obj-list)
src—-shore dest—-shore)))
(cargo—trips dir (cdr obj-list) src-shore dest-shore)))))

;7 pretty printing routine for the plans generated
(define (display-all-paths paths)
(if (not (null? paths))
(begin (display-path (car paths))
(newline)
(display—-all-paths (cdr paths)))))

(define (display-path path)
(display-path-aux (reverse path) 0))

(define (display-path-aux path cnt)
(Lf (not (null? path))
(let* ((curr—-state (car path))
(left (left—-shore curr—state))
(right (right-shore curr-state)))
(begin (display " ")
(display cnt)
(display " BARC—West:")
(display left)
(display " <—Rt1-——>")
(display " BARC-East:")
(display right)
(newline)
(display-path—-aux (cdr path) (1+ cnt))))))

Wednesday December 30, 2020 3/3



