Printed by Michael E Sparks

Dec 30, 20 14:21 farmer.pro Page 1/4

/* Prolog solution to the farmer’s wolf-chicken—-grain problem.

Michael E. Sparks, 5 Dec 2020
SAMPLE USAGE:
?- init(I), goal(G), setof(P,soln_DFSid(I,G,P),Ps).

BARC-W: [chicken, farmer,grain,wolf] <—-—-Rtl--> BARC-E:[]
BARC-W: [grain,wolf] <-—-Rtl--> BARC-E:[chicken,farmer]
BARC-W: [farmer,grain,wolf] <—-—-Rtl--> BARC-E:[chicken]
BARC-W: [wolf] <—-—-Rtl--> BARC-E:[chicken,farmer,grain]
BARC-W: [chicken, farmer,wolf] <—--Rtl-—-> BARC-E:[grain]
BARC-W: [chicken] <—-—-Rtl--> BARC-E:[farmer,grain,wolf]
BARC-W: [chicken, farmer] <-—-Rtl--> BARC-E:[grain,wolf]
BARC-W:[] <-—-Rtl-—> BARC-E:[chicken, farmer,grain,wolf]

NOY O W RO

BARC-W: [chicken, farmer,grain,wolf] <—-—-Rtl--> BARC-E:[]
BARC-W: [grain,wolf] <—-—-Rtl--> BARC-E:[chicken,farmer]
BARC-W: [farmer,grain,wolf] <-—-Rtl--> BARC-E:[chicken]
BARC-W: [grain] <—--Rtl--> BARC-E:[chicken,farmer,wolf]
BARC-W: [chicken, farmer,grain] <-—-Rtl--> BARC-E:[wolf]
BARC-W: [chicken] <—-—-Rtl--> BARC-E:[farmer,grain,wolf]
BARC-W: [chicken, farmer] <-—-Rtl-—-> BARC-E:[grain,wolf]
BARC-W:[] <-—-Rtl-—> BARC-E:[chicken,farmer,grain,wolf]

NOY NN WNh RO

I = [[chicken, farmer, grain, wolf], []],

G = [[], [chicken, farmer, grain, wolf]],

Ps = [[[[], [chicken, farmer, grain, wolf]], [[chicken, farmer], [grain, wolf]],
[[chicken], [farmer, grain, wolf]], [[chicken, farmer, grain], [wolf]], [[grain

], [chicken|...]], [[farmer|...], [...]], [[...|...7|...1, [...|...1], [[[], [ch

icken, farmer, grain, wolf]], [[chicken, farmer], [grain, wolf]], [[chicken], [f

armer, grain|...]], [[chicken, farmer|...], [grain]], [[wolf], [...|...11, [[...

R I [P D A R A P b
*/

% main user interface, uses a depth-first/

% breadth-first hybrid searching approach

soln_per_depth_first_search _with_iterative_deepening(Init, Goal,Plan) :-
path (Init, Goal,Plan),
reverse (Plan,Planl),
display(Planl,0).

% create alias for full predicate name

soln_DFSid(Init, Goal,Plan) :-
soln_per_depth_first_search_with_iterative_deepening(Init,Goal,Plan).

% returns a legal path from initial node to goal node

pathO (N, N, [N]) .

pathO(Init,Goal,[Goal|Path]) =
pathO (Init,Penultimate, Path),
successor (Penultimate, Goal),
\+ member (Goal,Path) .

Let’s improve our code safety by limiting the depth
to which iterative deepening can plunge.

Wednesday December 30, 2020 1/4

o
©°
)

°

Printed by Michael E Sparks

Dec 30, 20 14:21 farmer.pro Page 2/4

There’s risk that the 1imit is set too shallow to find a solution,
so a practitioner should generally set this high enough that

the stack can be put to good use for effective search.

The flip side is the deeper the search, the longer the run time,
so it shouldn’t be set so high that efficiency suffers.

(A 1imit of 13 is the minimum to find solutions here.)

max_depth (32).

oo o\© o© oo oo o

path (Init, Goal,Path) :-
max_depth(Dlim),
call with_depth_limit (pathO(Init, Goal,Path),Dlim,_),
nonvar (Path) . $ solutions must be fully instantiated.

State representation is a list of two lists,

being the left and right shores.

Shore constituents should be recorded in lexicographic order.
init ([X, [1]) :-

quicksort ([wolf,grain, chicken, farmer], X),

|

oo o o

goal ([[1,X]) :-
quicksort ([farmer,wolf, chicken,grain], X),
|

% checks whether shore is allowed when farmer’s away
disallowed (Shore) :-—-

member (wolf, Shore),

member (chicken, Shore),

\+ member (farmer, Shore),
|

disallowed (Shore) :-—
member (chicken, Shore),
member (grain, Shore),
\+ member (farmer, Shore).

% data selectors tailored for our state representation
left (State,Lshore) :-
State = [Lshore,_].

right (State, Rshore) :-
State = [_,Rshore].

case in which farmer’s on left shore and
carries an object to the right shore.
successor (BeginState, EndState) :-

left (BeginState, Lbegin),

right (BeginState,Rbegin),

member (farmer, Lbegin),
member (X, Lbegin),

X \= farmer,
delete_all (Lbegin, [X, farmer], LendO),
\+ disallowed (Lend0), % shore’s safe sans farmer
quicksort (LendO, Lend),

left (EndState, Lend),

append ([X, farmer],Rbegin, Rend0),
quicksort (Rend0, Rend),

right (EndState, Rend) .

)
©°
)

°

2/4 Wednesday December 30, 2020

Printed by Michael E Sparks

Dec 30, 20 14:21 farmer.pro Page 3/4

symmetric case in which farmer’s on right shore and
carries an object to the left shore.
successor (BeginState, EndState) :-

left (BeginState, Lbegin),

right (BeginState,Rbegin),

member (farmer, Rbegin),
member (X, Rbegin),

X \= farmer,
delete_all (Rbegin, [X, farmer],Rend0),
\+ disallowed (Rend0),

quicksort (Rend0, Rend),

right (EndState, Rend),

append ([X, farmer], Lbegin, LendO),
quicksort (LendO, Lend),

left (EndState, Lend) .

)
2
)

°

% case in which farmer’s on left shore and
% carries NO object to the right shore.
successor (BeginState, EndState) :-

left (BeginState, Lbegin),

right (BeginState,Rbegin),

member (farmer, Lbegin),

delete_all (Lbegin, [farmer], LendO),

\+ disallowed (LendO),

quicksort (LendO, Lend),

left (EndState, Lend),

append ([farmer], Rbegin, Rend0),

quicksort (Rend0, Rend),

right (EndState,Rend) .

symmetric case in which farmer’s on right shore and
carries NO object to the left shore.
successor (BeginState, EndState) :-—

left (BeginState, Lbegin),

right (BeginState, Rbegin),

member (farmer, Rbegin),
delete_all (Rbegin, [farmer],Rend0),
\+ disallowed (Rend0),

quicksort (Rend0, Rend),

right (EndState, Rend),

append ([farmer], Lbegin, LendO),
quicksort (LendO, Lend),

left (EndState, Lend) .

o)
©°
)

°

% purge elts of second 1list from first to give third:
% LI - L2 = L3
delete_all([1,_,I1).

delete_all ([X|L1],L2,L3) :-
member (X, L2),
|

delete_all (L1,L2,L3).

delete_all([X]|L1],L2, [X|L3]) :-
delete_all (L1l,L2,L3).

% lexicographically sort a list
quicksort ([1,[1) :— !.

Wednesday December 30, 2020 3/4

Printed by Michael E Sparks

Dec 30, 20 14:21 farmer.pro

Page 4/4

quicksort([Pivot|Tail],Sorted) =
partition(Pivot,Tail, Smaller, Larger),
quicksort (Smaller, SortedSmaller),
quicksort (Larger, SortedLarger),
append(SortedSmaller,[Pivot|SortedLarger],Sorted).

partition(_, [1,[]1,[]) := !.

partition(Pivot,[X|T],[X|Smaller],Larger) :—
X @=< Pivot, !,
partition(Pivot, T, Smaller, Larger) .

partition(Pivot,[X|T],Smaller,[X|Larger]) .
X @ Pivot, !, % the .GT. check’s technically unnecessary
partition (Pivot, T, Smaller, Larger) .

% pretty printing routine for the plans generated

display ([1,_) :-
nl, nl.

display([Move|Rest],Step) .
nl,
tab(2), write(Step), tab(2),
left (Move, Left), write ("BARC-W:"), write (Left),
write (" <—Rtl——> "),
right (Move,Right), write ("BARC-E:"), write (Right),
Stepl is Step + 1,
display (Rest, Stepl) .

4/4 Wednesday December 30, 2020

